A Family of Non-quasiprimitive Graphs Admitting a Quasiprimitive 2-arc Transitive Group Action

نویسندگان

  • Xin Gui Fang
  • George Havas
  • Jie Wang
چکیده

Let 0 be a simple graph and let G be a group of automorphisms of 0. The graph is (G, 2)-arc transitive if G is transitive on the set of the 2-arcs of 0. In this paper we construct a new family of (PSU(3, q2), 2)-arc transitive graphs 0 of valency 9 such that Aut0 = Z3.G, for some almost simple group G with socle PSU(3, q2). This gives a new infinite family of non-quasiprimitive almost simple graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An O'nan-scott Theorem for Finite Quasiprimitive Permutation Groups and an Application to 2-arc Transitive Graphs

A permutation group is said to be quasiprimitive if each of its nontrivial normal subgroups is transitive. A structure theorem for finite quasiprimitive permutation groups is proved, along the lines of the O'NanScott Theorem for finite primitive permutation groups. It is shown that every finite, non-bipartite, 2-arc transitive graph is a cover of a quasiprimitive 2-arc transitive graph. The str...

متن کامل

An infinite family of biquasiprimitive 2-arc transitive cubic graphs

A new infinite family of bipartite cubic 3-arc transitive graphs is constructed and studied. They provide the first known examples admitting a 2-arc transitive vertex-biquasiprimitive group of automorphisms for which the stabiliser of the biparts is not quasiprimitive on either bipart.

متن کامل

On automorphism groups of quasiprimitive 2-arc transitive graphs

We characterize the automorphism groups of quasiprimitive 2-arc-transitive graphs of twisted wreath product type. This is a partial solution for a problem of Praeger regarding quasiprimitive 2-arc transitive graphs. The solution stimulates several further research problems regarding automorphism groups of edge-transitive Cayley graphs and digraphs.

متن کامل

The locally 2-arc transitive graphs admitting an almost simple group of Suzuki type

A graph Γ is said to be locally (G, 2)-arc transitive for G a subgroup of Aut(Γ) if, for any vertex α of Γ, G is transitive on the 2-arcs of Γ starting at α. In this talk, we will discuss general results involving locally (G, 2)-arc transitive graphs and recent progress toward the classification of the locally (G, 2)-arc transitive graphs, where Sz(q) ≤ G ≤ Aut(Sz(q)), q = 2 for some k ∈ N. In ...

متن کامل

Finite locally-quasiprimitive graphs

A 1nite graph is said to be locally-quasiprimitive relative to a subgroup G of automorphisms if, for all vertices , the stabiliser in G of is quasiprimitive on the set of vertices adjacent to . (A permutation group is said to be quasiprimitive if all of its non-trivial normal subgroups are transitive.) The graph theoretic condition of local quasiprimitivity is strictly weaker than the condition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 1999